AD-4125 026

UNCLASSIFIED

ONE-SIDED TOLERANCE .LIMITS FOR BALANCED ONE-WAY ANOVA
RANDOM MODEL(U) SOUTHERN METHODIST UNIV DALLAS TEX DEPT
OF STATISTICS R W MEE ET AL. NOV B2 TR-168
N00014-76-C-0613 F/G 12/1,




22

L

S B2s 25
5-'5';
Emh
§ml20

[ .8

i bt

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




e T IR T e

E et Ce T T




ONE-SI1DED TOLERANCE LIMITS FOR BALANCED ONE-WAY
ANOVA RANDOM MODEL

by
Robert W. Mee and D. B. Owen

Technical Report No. 168
Department of Statistics ONR Contract

November 1982

Research sponsored by the O0ffice of Naval Research
Contract NOOO14-76-C-0613

Reproduction in whole or in part is permitted
for any purpose of the United States Government

The document has been approved for
public release and sale; its distribution is unlimited

Sesesstion For

X

g L G At S

{prot | Special

Availability Codes °
Avail and/or \‘ 7

FTIS GRAMI

PTIC TAB 0O

thennounoed O

Justification | DEPARTMENT OF STATISTICS
Southern Methodist University

" Dallas, Texas 75275

pistridution/ -~

Bl

AT or T A B AR U LA Ot R N T




e,

ONE-SIDED TOLERANCE LIMITS FOR BALANCED ONE-WAY

T

ANOVA RANDOM MODEL

:

Robert W. Mee and D. B. Owen ¥
t

T T AR T Y PPN VAo, o




AUTHORS' FOOTNOTE

Robert W. Mee is Visiting Assistant Professor and D. B.

Owen is Professor, Department of Statistics, Southern Methodist

University, Dallas, Texas 75275. This work was supported by

the Office of Naval Research under Contract Number N00014-76-C-0613.

N R TIE t) A Yl

TS YL M . At T A Yt e g




e i K-

A
"

DThe authrs sasTRACT
—Weinvestigate various techniques for fdetermining a toler-
ance limit L such that the probability is ¥ that at least a pro-
f%grtion P of a population produced in batches exceeds L. First,
—w!jevaluate the approach of Lemon (1977) for this problem and
then present alternative approaches. If the variance ratio is
known, one may obtain exact tolerance limits. For settings where
the variance ratio is not necessarily known, Mvee)éescribe a proce~

dure, based on the Satterthwaite approximation, for obtaining

conservative tolerance limits.

Key Words: Noncentral t-distribution; Satterthwaite Approximation;

Cluster Sampling.
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1. LEMOM'S APPROACH FOR DETERMINING L

Lemon (1977) gives a method for setting tolerance limits on
observations that vary in different batches. He sought to deter-
mine a lower tolerance limit L (where L is a function of the
sample) such that the probability is y that at least a proportion
P of the population is above L, i.e.,

Pt{Ptx[X?_Llsample] > P} =y, (1.1)
where X denotes an observation from the populaﬁion of interest
and where the outer probability in (1.1) is with respect to the
sampling distribution of L.

Let xij denote the jt—h test observation from the it—h batch
or cluster, and suppose that the test observations satisfy the
random~effects linear model

X,,=u+b i+w

i3 ij
where y is the overall mean, "H'b:l. the mean of the 1t—h- batch, and

1=1,...,I, 3=1,...,3 ,

wi j a random deviation. We assume that the b i's and wij's are

independently distributed as normal variates with zero means

and variances 02 and 02, respectively. Further, let uU denote
b " Jw
2 "
the sample mean i, jgl Xij/IJ and let s° denote the "between

groups” mean square (MS). The individual observations X,. have

1j
variance o: -012’ +o‘2’ while the sample mean 4 has variance
(JU:M:)/ (1J), and s2 estimates 0’2-J012’+0: .
Lemon showed that L-u-kLs satisfies (1.1) for
k=T, 6,1/ 1/ (1.2)
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where, for arbitrary constants a, B and v, Tv(a,B) denotes the
1008 percentile for a noncentral t distribution with v degrees

of freedom (df) and noncentrality parameter c, and where

e, <PV ARG i A S e T

§ = nxp(m)”z (1.3)
2 . 2 \1/2 1/2
o, + 0
B=o /o= bz ¥ - §R"’+11 (1.4)
Jo. + ¢
b w
2,2
R °b/°w (1.5)

and Kp = ]100P percentile of the standard normal distribution.
Generally, tolerance limits are defined in terms of an estimate
of the population standard deviation. Lemon chose to follow this ‘ g

standard form, and so, computed tables for tolerance factors k.,

where

K} =k (ola) = T, (8,1)/18 (1D, (1.6)

The noncentrality parameter § is a (monotone decreasing)

0 I I

function of R, so, both kL and ki are functionally dependent on

R. Since R is generally unknown, Lemon proposed taking
L=y- kL(R) * 3 (1.7)

where kL(ﬁ) is obtained by substituting the sample moment esti-

mator R (computed from the AOV) for R in expression (1.2), i.e.,

R = Maximam{0, (F-1)/J},
4




where F denotes the MS ratio, szlss, and s: is defined to be

the "within groups" MS. (If F < 1, one generally assumes az =0

and then combines s2 and s: to estimate o:.) Define s: = J-ls2 +

(1-J-1)s:, i.e., si is a linear combination of the between and

within MS's which estimates the population variance oi = ci + c:.
The tolerance limit in (1.7) is equivalent to L = ; - ki(i)sx,
vhere k', (R) = k (R)(s/s).

Lemon's justification for using (1.7) was that the vari-
ability in kL(ﬁ) was insignificant. Although Lemon recognized
the distribution of kL(ﬁ), his "numerical integration... over the
rough grid" (p. 679) of 3 values for R did not adequately approxi-
mate the variability of kL(ﬁ). We obtained the mean and variance
of kL(ﬁ), conditional on F > 1, for a variety of examples. The
six cases given in Table 1 are those which Lemon mentioned inves-
tigating. We list the expected value (EV), standard deviation
(SD), and coefficient of variation (CV) of kL(ﬁ). Lemon claimed
a CV of less than 2% for kL(ﬁ), whereas we found values from 6 to
21% by careful integration, e.g., CV = 21.3% for Case 3.

In spite of this variability, we have found Lemon's procedure

to be conservative, i.e., the probability
Y (R) = Prﬁ’s’ﬁ{Prx[x > u -k (R)s{u,s,R] > P[F > 1} (1.8)

generally exceeds y. The probability yL(R) is given in Table 1

for each case considered there. [We evaluate YL(R) by computing
5
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(1.8), conditional on F = f, and then numerically integrating

LY - e T T

these values with respect to the density of F (truncated at 1).]
These few cases illustrate the comservativeness of Lemon's pro-
cedure. We found that YL(R) appeared to be decreasing in R, e.g.,
for Case 2 in Table 1, yL(l) = ,9985, whereas YL(R) was computed
to be .9999, .9799 and .9681 for R = .2, 5 and 10 respectively.

Hence, Lemon's procedure appears to be the most conservative

when J is large and I and R are small.

We offer two intuitive reasoms for the fact that YL(R) > v.
First, note that kL(i) is a decreasing function of i, while the
EV of 32, conditional on F, is an increasing function of R. Thus,
k(R) tends to compensate for the variability in s, so that u - k(R)-s
is more stablé than i - k(R)-s.

Second, the probability (1.8) is equivalent to
zZ+ 8 YRy . . 1/2
Pr[;;7;; SkiR) ¢ (o /o) » AN, (1.9)

where Z is a standard normal variate. Using the result of
Satterthwaite (1946), si/oi is approximately distributed as a

xi/f variate, where
£ = RADZNRTH Y (1-1) + @-1) /152, (1.10)

Since f is greater than I-1 (though it approaches I-1 as R tends

to infinity), the "df" in si exceed the df for sz. Therefore,

the tolerance factors ki which are based on TI_l(G,y) tend to be : i
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larger than necessary. The fact that f is an increasing function
of J and a decreasing function of R reinforces the observation
made earlier that Lemon's procedure is more conservative for
small R and large J.

2. AN ALTERNATIVE PROCEDURE BASED ON THE
SATTERTHWAITE APPROXIMATION

In this section, we discuss a procedure for determining L
which employs the Satterthwaite approximation mentioned at the
close of Sectionl., IfL = ; - késx satisfies (1.1), this corre-
sponds to ké satisfying

Pr[z + 4 1/2

;}75; < kBANTTY = v,

Since si/ci is approximately distributed as a x%/f [where f is defined

in (1.10)], we have (approximately)

/2

kg = T 08,/ BN (2.1)

S
It is informative to investigate ké as a function of R. As

R tends to infinity, ké approaches

kg(=) = Tr-l“‘p"f'”"’f ,

which i{s the tolerance factor for a random sample of size I.
Hence, when essentially all the variation is between groups, re-
peated measurements within a group provide no additional informa-
/2 1/2
TIJ-I-E »Y)/(1J)

€ = (J-1)/(1J-J+1). (Note that 0 < ¢ <1 forI > 1.) Thus,

tion. At R =0, ké(O) = (KP(IJ)1 , where

7




except for the term €, at R = 0 the approximation (2.1) corresponds

to the tolerance factor for a random sample of size IJ. When 0 < R
< o, kg is greater than ké(O) and less than ké(w). Selected values

of ké appear in Table 2.

If R were known, the tolerance factor ké could be obtained
from Table 2 or calculated using (2.2). When R is unknown, one
might consider replacing R in (2.2) with R. Let ki(R) denote ki
evaluated at R = &. We computed

YS(R) = Pru

~ -~ R - - ' 2 - B
'sx’R{Pr[A > n kS(R)sx|u,sx,R] > PIF > 1}  (2.3)

for a variety of examples in order to evaluate the procedure of
taking L = no- ké(ﬁ)sx. [The computations were performed as de-
scribed in Section 1 for YL(R).] The function YS(R) necessarily
approaches v as R approaches infinity, and YS(R) exceeds y for R
sufficiently small. However, for intermediate values of R, YS(R)
is generally less than v, e.g., for I =J =5, P= .9 and vy = .95,
ys(R) is below .95 for R > .5 with infimum .91.

Since the probability YS(R) can fall below vy when using L =
ﬁ - ké(ﬁ), we seek another procedure to replace it. We propose
using ké(R*), where R* denotes an upper n confidence bound for R,
i.e.,

R* = max{(FFn - 1)/3,0},

where Fn is the 100n percentile of an F distribution with de-

grees of freedom v = I(J-1) and v, = I-1 (Searle 1971, p. 414).

8
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That is, we enter Table 2 with the upper confidence limit for R

rather than the point estimate of R. Thus using ké(R*) instead
of ké(ﬁ) results in a more conservative procedure. The problem
here is in choosing a reasonable value for n.

We found it necessary to vary n according to the values of vy
and P that are being used. Let Yg(R) denote the probability obtain-
ed by replacing R with R* in (2.3). We found that Yg(R) is decreas-
ing in J with a limiting value that may be computed using numerical
integration. Thus, we were able to determine n, such that yg(R)
>y for all J and R and for I > 5 (the limiting value was increasing
in I). For the following combinations of y and P, the necessary

values of n are

Y
P_ .90 .95 .99
.90 .76 .825 .91
.95 .78 .84 .92
.99 .80 .855 .93

Lemon's procedure is always conservative, being most conser-
vative for large J and small I and R. Our procedure above is most
conservative for small J and large R. One practical solution here
would be to choose in each situation (based on I, J and vague knowl-
edge of R) the procedure which one expects will produce the smaller
k value. However, if R is known or known to within a close approxi-

mation then the procedure given in Section 3 below should be used.

9




3. PROCEDURE WHEN R IS KNOWN

If the variance ratio is known, this additional information
may be utilized to obtain a tolerance factor which is generally
smaller than those obtained using either of the procedures de-
scribed in Sections 1 and 2. Knowledge of R enables one to pool
the two MS's and thus obtain an estimated SD which has 1J-1 df.

The quantity
(sZ/oz) « [(I-1) + I(J-1) (JR+1)/F)

"
is equivalent to (I-l)(szlcz) + I(J-l)(s;/c:), and, therefore is

distributed as a chi-square variate with IJ-1 df. Hence, condition-
al on F, (32/02) is distributed as a known multiple of a xiJ—l

variate. Using this result, the conditional probability,
Pry o|p[Pr (X > v - ks|u,s,F} 2 P|F] = v (3.1)
for

K = 6,v)/ant’?,

Tri-1
with ¢ = [I-14I(J-1) (JR+1)/F}/ (1J-1).

The tolerance limit L = ; - k * s may be expressed in stan-
dard form as L = p - k'sx, where k' = c'k&, with

/2

Ky = Ty G/ Ban?) (3.2)

¢! = cBs/s_ =
x

([I(RHL) / (F+I-1) ] [T(-1) + (I-1)F/(IR+1)]/(13-1)}1/2

. (3.3)

10
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We chose to factor k' in terms of kﬁ and c¢', because kﬁ does not
depend on F. 1In Table 3, we provide values for ké. The factor
¢' is a decreasing function of the MS ratio (and hence, of R) and
equals 1 when i = R. Thus k' is somewhat smaller (larger) than
the table value k& if R is greater (less) than R.

Given I, J and F, k' is a strictly increasing function of R.
Thus, if one is certain that R < r, then one may enter Table 3
with R = r to obtain ké and then compute ¢' from (3.3).

For settings where R is unknown, we considered the procedure
of computing an upper 100(1-2)% confidence bound R* for R “ased
on F, computing k' at R = R¥, and then combining the two proba-
bility statements to obtain an overall probability of at least
(y-8). However, this approach produced extremely large (conser-
vative) tolerance factors. This may be attributed to the fact
that c'ki increases without bound as R approaches infinity.
Hence, the procedure based on (3.1) is not recommended unless pre-
cise knowledge about R is available apart from the sample.

4. DETERMINING k; AND ké BY INTERPOLATION

Tables 2 and 3 provide tolerance factors ké and kﬁ respec-
tively, for vy = .95, P = .9 and .99, I < 10, and for selected
values of J and R. For combinations of J and R not appearing
in the tables, the tolerance factor ké or ké mav be obtained by
linear interpolation in I/J and by linear interpolation in R
for 0 < R < .2, logarithmic interpolation for .2 < R < 10 and

11
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linear interpolation in 1/R for R > 10, (For R = 0, the appro-

priate tolerance factor is the factor for a random sample of
size 1J.) This interpolation scheme is similar to one suggested
by Lemon.
5., EXAMPLES

We illustrate theprocedurésdiscussed in Sections 2 and
3 for determining a tolerance limit, employing the example dis~
cussed by Lemon (1977, p. 680). Six samples from each of five
independent batches of material composed the sample from which a

lower tolerance limit for static strength is to be determined,

with P = .9 and v = .95. The summary statistics were n = 186
ksi (thousand pounds per square inch), R = 1.37 and s, = 9.04,
To determine ké (as described in Section 2.2), we compute an 82,5Z%
upper bound for R,

R* = [9,22(2.67) ~ 1]/6 = 3.94.
The tolerance factor ké(R*) computed from Table 2a equals 2.83,
and hence L = 186 - 2.83(9.04) = 160.4. Hence we can be at
least 957 confident that at least 90% of the material in the
population has static strength above 160.4 ksi. For comparison,
we note that Lemon's procedure produces a tolerance limit of
156.3 ksi (based on ki(i) = 3,285) which is more restrictive
than 1s necessary.

To illustrate the procedure for computing k', suppose that,

in addition to the sample information, it is known that R < 1,
.12




Then, from Table 3a, we obtain k& = 2.00 and, using (3.3),

¢' = ,9385., Hence k' = C'kﬁ = 1.877, and L = 169.0 ksi. As
mentioned in Section 3, k' may be much smaller than ki or ké
(as in the case here), yet the validity of the tolerance limit

depends on the assumption about R.

13
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Table 1: Variability of kL(R) (P= .90, y= .95, R=1)
Table 2: One-Sided Tolerance Factors ké for One-Way-Random-
Ef fects-ANOVA
Table 3: One-Sided Tolerance Facters kl'! for One-Way-Random~
Effects-ANOVA
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TABLE 1. Variabilityof 13_(1;) (P=.90, y=.95, R=1)
k, (R)

case I J k(R) - EV sD v prlF>1] L® &
{ 1 5 2 2.714 2.721 .198 . .073 .155 .9913 i

2 5 5 1.889 2.010 317 158 .047 .9985 i

3 5 10 1.388 1.528 325,213 .015 9995 !

4 10 2 1.878 1.895 121 064 .057 .9821
] 5 10 5 1.308 1.358 155 114 .004 .9925 %
§ 6 10 10 .961 1.005° 130 .130  .000 .9957
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TABLE 2. ONE-SIDED TOLERANCE TACTORS ké

FOR ONE-WAY-RANDOM~EFFECTS-ANOVA

a. y= .95 P = ,90




Table 2 (Cont'd)

b. y= .95 P = ,99

J I
2 3 4 5 6 7 8 9 10
R- L ] 2
2 8.83 S5.44 4.54 4.10 3.83 3.65 3.52 3.42 3.34
4 5.16 4.04 3.65 3.43 3.29 3.19 3.12 3.06 3.01
8 4,03 3.47 3,23 3.10 3.01 2.95 2.90 2.8 3.83
16 3.56 3.18 3.02 2.93 2.8 2.81 2.78 2.75 2.72
L] 3.11 2.8 2.79 2.73 2.69 2.66 2,63 2,61 2.60
R=1
2 13.28 6.54 5.12 4.50 4.14 3.90 3.74 3.61 3.51
4 8.58 5.24 4.38 3.97 3.73 3.56 3.44 3.3 3.27
8 7.02 4.70 4.05 3.73 3.53 3.39 3.29 3.22 3.15
16 6.37 4.45 3.89 3.61 3.43 3.31 3.22 3.15 3.09
L] 5.79 4.22 3.73 3.49 3.33 3.22 3.1 3.08 3.03
R=5
2 24,83 8.75 6.22 5.22 4.68 4.3&4 4,10 3.93 3.79
4 20.51 7.99 5.85 4.98 4.50 4,20 3.98 3.82 3.70
8 18.68 7.64 5.67 4.86 4.42 4.13 3.92 3.77 3.65
16 17.84 7.47 5.59 4.8 4.37 4.09 3.89 3,75 3.63
o 17.05 7.30 5.50 4.75 4.33 4,06 3.8 3.72 3.61
R=10
2 29.58 9.49 6.57 5.4&4 4.84 4.47 4,21 4.02 3.87
4 26.49 9.01 6.34 5.30 4,74 4.39 4.1& 3,96 3.82
8 25.08 8.78 6.23 5.23 4.69 4.35 4.11 3.93 3.79
16 24.41 8.67 6.18 5.19 4,66 4.33 4.09 3,92 3.78
o 23,60 8.56 6.13 5.13 4.64 4.30 4.07 3.90 3.77
R-nc
37.09 10.55 7.06 5.74 5.06 4.64 4,35 4.14 3.98
*c
for all J
18
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TABLE 3. ONE-SIDED TOLERANCE FACTORS ké

FOR ONE-WAY-RANDOM-EFFECT S-ANOVA

R=.2

R=1

R=5

R=10

Rmoo

g omEeN 8 ONOO BN g D&M
[N S N X

« o e
NV NN

g LN

g onBEN

a. y= .95 P= .90

I
3 4 5 6 7
2 3.05 2.62 2.39 2.24 2.14
9 2.30 2.11 1.99 1.91 1.86
0 1.98 1.87 1.80 1.75 1.71
8 1.83 1.75 1.70 1.66 1.63
6 1.67 1.62 1.58 1.56 1.54

.34 3.14 2.69 2.45 2.30 2.19
9

2.45 2,24 2,11 2.02 1.95

.45 2.19 2.04 1.95 1.89 1.8
.27 2.07 1.95 1.88 1.82 1.78
.10 1.95 1.86 1.80 1.76 1.72

3.06 2.58 2. . .

2.65 2.35 2.18 2.07 2.00 1.94
2.49 2.24 2.10 2,01 1.95 1.89
2.34 2.15 2.03 1.95 1.89 1.8
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Table 3 (Cont'd)
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